Typen
:- Stetige Verteilungsfunktion
- Diskrete Verteilung
- Stetige Verteilung
- Bedingte Verteilung
- Verteilung einer Zufallsvariablen
- Marginalverteilung
- Degenerierte Verteilung
- Nichtdegenerierte Verteilung
- n-faches Produkt einer Verteilung
- Verteilung eines stochastischen Prozesses
- Benfordsche Zufallsvariable
- Modale Verteilung
Beispiele
:Konstrukte
:Generalisierungen
:Eigenschaften
:Involvierte Definitionen
:Veranstaltung
: EiSReferenz
: @henze2019
⠀
Definition: Verteilung einer Zufallsvariablen
Sei
ein Wahrscheinlichkeitsraum.
Seiein Messraum.
Seieine Zufallsvariable. Als Verteilung von
bezeichnen wir die Funktion (manchmal auch ), mit
Schreibweise
Sei
ein Wahrscheinlichkeitsraum.
Seiein Messraum.
Seieine Zufallsvariable.
Seiein Wahrscheinlichkeitsmaß. Falls
-verteilt sein sollte, schreiben wir auch:
Anmerkung
Wahrscheinlichkeitsmaß vs. Wahrscheinlichkeitsverteilung
Sei
eine Grundmenge.
Seieine -Algebra über .
Seiein Wahrscheinlichkeitsmaß. Wir nennen
nur dann Wahrscheinlichkeitsverteilung, wenn ein Bildmaß ist. So wie zum Beispiel hier bei der Wahrscheinlichkeitsverteilung von Zufallsvariablen.
Über die Kanonische Konstruktion eines Wahrscheinlichkeitsraums können wir uns jedoch auch immer eine solche Zufallsvariable konstruieren.